Friday, April 18, 2014

Vocabulary Final Exam Folder | Quizlet

Wednesday, April 2, 2014

I got this question wrong because i didn't use the proper measurement 

Wednesday, March 19, 2014

Linear Programming


Vertices:
 -6,0
 0,4
 0,0

Constraints
Objective Function: 
x ≥ 0
y ≤8
-2x + 3y≥  12
 C=4x+6y 
C=4(-6)+6(0)
C=-24
C=4(0)+6(4)
C=24

 C=4(0)+6(0)
C=0 



Vertices:
 1,8
 1,2
 5,2

Constraints
Objective Function: 
x ≥ 1
y ≥ 2
6x +4 y ≤ 38
 C=7x+3y 
C=7(1)+3(8)
C=31

 C=7(1)+3(2)
C=13
C=7(5)+3(2)
C=41



Vertices:
 -5,4
 5,8
 5,4

Constraints
Objective Function: 
x≤ 5
y ≥ 4
-2x +3 y ≤ 30
 C=2x+5y 
C=2(-5)+5(4) 
C=10

 C=2(5)+5(8)
C=50
 C=2(5)+5(4)
C=30


Vertices:
0,6
0,0
6,0

Constraints
Objective Function: 
x ≥ 0
y ≥ 0
x + y ≤ 6
C=3x+4y
C=3(0)+4(6)

24
C=3(0)+4(0)
0
C=3(6)+4(0)
18

Vertices:




Constraints
Objective Function: 
x ≥ 0
y ≥ 0
4x + 4y ≤ 20
x+2y≤8






Tuesday, March 4, 2014

Graphing Exponetial Growth & Decay
Y= a×b x-h +K
A= multiplier
A>1= stretch
A<a<1= compression
A<0 (negative) = flipped over x- axis.
B= base has an exponential (always positive)
0>b<1= Decay (always decreasing)

Asymptote
y=k

Domain
(-∞, ∞) =all real numbers

Range
y>k (a is pos)
y<k (a is neg)



Exponential equations domain is always all real numbers.

Tuesday, February 18, 2014

General forms of a Sequence
Arithmetic & Geometric Sequences



Arithmetic formula: an= a1 (n + 1) d


Geometric formula: an= a1* r (n-1)


Example: -9, 3, -1, 1/3, 1/9    
This is a geometric sequence.
To find the term in a geometric sequence multiply or divide the previous term by “r”.

-9, 3, -1, 1/3, 1/9    r= -1/3  

5,   -10,   20,   -40    r= -2 
-10    20     -40

5      -10     20

Monday, February 17, 2014

Compound Interest Formula
A=P(1+R/N) NT
P(rincipal)-borrowed
R(ate) -decimal
N(umber) –number of times compounded

T(ime)-years

Wednesday, January 15, 2014

Characteristics & Traits


 


Characteristics and Traits

Domain: X values. Left/Right

Range: values. Up/Down

End Behaviors: The description of what happens to a graph at the ends

Absolute Max/Min: Highest/Lowest point.

Local Max/Min: More than 1 highest/lowest point.

Intervals of increase: What happens to a graph (y value) as you move along the x-axis increase

Intervals of decrease: To see if the y values are increasing.

X intercept: X,00

Y intercept: 00,Y

Odd: symmetric about the origin

Even: symmetric about the y axis

Function: Passes the vertical line test

One to one: Passes both vertical and horizontal line test